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ABSTRACT-

We have studied numerically period-trebling and
period—quardrupling (k+3D, k+4D) cascades of periodic
orbits of two dimensional area-preserving maps. Period-
érebling § -sequence converges as n», and the limit
value is 20.2. Unlike the period-doubling cascades,
each of beriod-trebling an-and Bh—sequence cohverges
alternately, and two limit values of Op—seguence are
a1(= -17.9) and ¢z (= 2.45) and two limithalues of Bn-
sequence are B; (= -31.0) and B, (= 6.02). The structure
of periodic orbits reproduce itself asymtotically from
one l/3—resonénce to every other l/3+resonancé under
the rescaliné and the fescaling factors o (=01.02) and
B(= B,*B,) are -44.0 and -187.‘~Period-quadrupling se-
guence confirm the universal limiting behavior and the

universal constants ¢,0 and B are 24.5, -5.61 and 14.3.



i. INTRODUCTION

There has been interest in the transition from the
regular motion to the irregular motion in the dynamical
systems. It is generally believed that two dimensional
area—preserving maps - - have generic properties of ergodic
motion and one dimensional noninvertible and higher di-
mensional‘areafcontracting.maps haQe generic properties
of turbulent motion. For the two diménsional area~pre-
serviﬁg maps, KAM theorem says that when a non-integrable
canonical perturbation is acted on an integrable mapping,
invariant circles with sufficiently irrational winding
numbers are preserved, albeit. in distorted form, while
invariaht circles with rational and nearly rational
winding numbers. are destroyed and the measure of the
destroyed region is, though small, not zero. But KaM
theorem does not say what happens to the motion in the
‘destroyed region. .By the Poincaré -Birkhoff theorem,
any invariant circle of period n breaks up into many
pairs of elliptical and ordinary hyperbolic orbits of
period n when a nonintergrable canonical perturbation
is acted. As the perturbation is increased; at 2/m -

resonance (m and %25, relatively prime) a pair of



elliptical and ordinary hyperbolic orbits of period m
times the original period are born around the original
elliptical orbit born in consequeﬁce of the Poincaré-
Birkhoff theorem and finally at 1/2-resonance (bifur-
cation) a new elliptical orbit of the doubled period

is born around the original orbit which now'turns into
the inversion hyperbolic orbit!~? The neﬁly born elli-
ptical orbit either by resonance or bifurcation is now
the basis of the above process, and this'process repeat
infinite times. The stable separétrix and the unstable
sepératrix emanating from the fixed hyperbolic point or
two hyperbolic points of thé same unstable orbit inter~
sect each.other infinitely to form a kind of network
with infinitely tight loops. Therefore, near the separ-
atrices of the unstable orbit a chaotic region is formed.
In.this region, another unstable orbit is born, separa-
trices of two different unstable orbits intersect eaqh 
other infinitely and the chaotic regions are broadened.
This phenomenon is called the resonance overlab which
is the criterion-of the stochasticity in the theory of
the nonlinear dscillation developed by Chirikov and
Zaslabski. . As the KAM torus encloses this chaotic

region for N (degree of freedom)=2, this chaotic region



is a locally unstable region. Beéause KAM £orus.does
not enclose the locally unstable region for Nvi 3, the
locally chaotic regions are connected to form a globally
chaotic region. This phenomenon is called the Arnold
diffusion.?’?®

In recent years, Feigehbaum's discovery of the un-
iversal scaling behavior of the period-doubling cascade
of the one dimensional noninvertible-maps expedited the
study of the period-doubling cascade of the two dimen-~
sional area-preserving maps.® The universal scaling
behavior has beén discovered by the numerical study and
the renormalization method. 2% By the resonance, there
are in general k-r™ (r23) cascades in the Hamiltonian
maps. Therefore it would be interesting to study the

k-r? (r23) cascades.



'II. MULTIFURCATION FOR THE 2-DIM. REVERSIBLE
AREA-PRESERVING MAPS

We use the following form for the 2-dim. reversible
area-preserving maps,

: = = = - = - 2
T: Xn+1 Yn+2h(Xn),‘Yn+1 Xn! h(X) (1~ax")/2

Most of different forms of maps studied in literature are
all equivalent to the above form. Since T is a rever-

sible map, T = I,-I:; Ii = Ii = 1,

II: xn+1 = Xn, Y

-Yn + 2h(Xn)

L X, =¥ Yy X

1

- The set of the invariant points under the operation of
I, or I, forms a line and we call it a symmetry line.
It can be easily shown that‘ﬁwo'or no points of every
orbit of even period and one or no points of every orbit
of odd period lie on any given . symmetry line. It is of
grea£ advantage to use the reversibility'fdr the ﬁumerin
cal work. The symmetry lines of T are ¥Y=X and Y=h(X).

A quantity R called the residue makes the study of
the‘behavior of theineighborhood around a periodic orbit
effective. The residue is given R = (2—TrM)/4, Where M

is a Jacobian matrix of T" about an orbit of period n.



-The periodic orbit is stablo for 0<R<l (except foi

R ='3/4 and sometimes 1/2), and‘unstablerfor R<0 and.R>1.
In the stable case;, nearby points to a periodic point
move around it in ellipses under M at‘rate o rotations/
period given by R = sin®(a/2). Therefore the orbit is
called an elliptical orbiﬁ. In the unstable case neafby
points move on hyperbolae, alternating between correspon-
ding branches. if R>1 (inversion hyperbolic orbit), and
staying on one branch if R<0 (ordinary hyperbolic orbit).
In the special cases R=0, 1, 3/4, 1/2 corresponding to
the low order resonances, M is not sufficient to describe
the behavior of.noarby points. | |

When the residue R of a stable orbit passes the value
sin? (m&/m), as the nonintergrable parameterla changes,
where £ ond m are coprime, m25 and m>2>0, a pair of
stable and unstable orbits of period m times the original
period ore born neaf.the original orbit. The‘resonances
of order 3'(m=3) and order 4 - (m=4) are exceptional.

For the generio bifurcation (R=1), a new elliptical
orbit of doubled period is born around the original orbit
which turns to the inversion hyperbolic orbit. When R=0,
two new elliptical orbits of the same period are bifur~

- cated from the original orbit which turns to.the ordinary



hyperbolic orbit. When R(21) passes to 1, a new ordinary
hyperbolic orbit of doubled periocd is bifurcated from thé
original inversion hyperbolic orbit thch turns to a el-
liptical orbit. As the nonintergrable parameter a is fur-
ther increased, the above elliptic orbit turns to the
ordinary hyperbolic orbit;

Before the residue. R passes the resonance value
(R=3/4), a pair of stable and unstaﬁle orbits of period
3 times the original period are born, at the l1/3-reson-
ance value the newly born unstable orbit is absorbed by
the'original orbit, and after‘the residue R passes the
1/3-resonance value, the original periodic orbit emits

the newly born unstable orbit. (Fig.'l, Fig. 2, Fig. 3)

Fig. 1. Phase flows under T3 when R<3/4. e denotes an
elliptic point and x denotes an ordinary

hyperbolic point of period 3.



Fig. 2. Phase flow Fig. 3. Phase flow
under T* under T°

when R=3/4 when R>3/4

When R=3/4, theuoriginai elliptic orbit is unstable
(Fig. 2). |

For the 1/4-resonance, there.are two cases. One
case is thét‘at thé resonance value(R=1/2), a'pair of
elliptic and ordinary hyperbolic orbit are born. The
other case is the same as the Caée of the 1/3-fesonande

(Fig. 4, Fig. 5, Fig. 6)



Fig. 4. Phase flow under T!® when R<l/2.

-

e denotes an elliptic orbit of period 4.

v
4

Fig. 5. Phase flow unter ot e Fig. 6. Phase flow under
when R=1/2 N T!'® when R>1/2
At the resonance, the original orbit is unstable

(Fig. 5).



III. PERIOD-TREBLING AND PERIOD-QUADRUPLING CASCADES

We use the following form for the 2-dim. reversible

area-preserving maps,

T: Xn+1 = ;Yn+2h(xn)’ Yn+1 = Xn'
-, | |
where h{(X) = {1-aX )/2 (1)
Since T is a reversible map, T = I,- I,; I} = I, = 1,
iz X4 = Ynr Ypey = 7Y 0 Zh(Xn) (2)
T2 Xppy = Ynr Yp4y = % ' (3)

The symmetry lines of T are ¥=X and Y=h(x).

Before the résidue'R passes the 1l/3-resonance
value (R=3/4), a pair of stable and unstablé orbits of
period 3 times the original period are born, at the re-
sonance value the newly born unstable orbit is absorbed
by:the original periodic 6rbit, and after the residue R
passes the l/3-resonanée value, the original periodic
orbit emits the newly born unstable orbit.

Let us see the structure of the newly born orbit
by the resonance of order 3. One point of the orbits
of period‘3n lies on the symmetry line Y=X, and another
point lies on the Y=h(X). There are two cases for the

k-3n~cascades, where k is even. One case is that two



different points of the orbits 6f,period k-3" lie on

the ¥=h(X), and the other case is that two different
points of the orbits of period k-3" lie on the Y=X.

For example, the 2-3n—éascade is the fdrmer case and the
6-3"-cascade is the latter case, where the basic orbit
of period 6 is the orbit bifurcated from the érbit of
period 3. For the 3"-cascade, let us call the point

- which lies on the ¥Y=X the initial point. The initial
point 2., the 1/3-way point ZBn_1 and the 2/3-way point
Zz_an-l of the orbit of period 3" enclose the initial
point of the orbit of period 3n—1’ and the l/6-way point

Z(sn_1 1j/é' the l/2-way point Z(sn “y /2 and the 5/6~way

. point 2.(5 Jn-1 _ }/2‘ enclose the. l/2-way point of the

. . n=1, = ‘
orbit of period 3017%; ZT (XT, YT ).

An orbit of odd period (2m+l) with the initial
point on the Y=X satisfies

Xm+2 = xm—ﬂ, Ym+£+1 =X

mep4r 2 =0 Lo een (8)

Since Y. =X ., X =Y and X _ .=
T T+1' 2.3n_1 : 2-3nh1+1 gn=1 Y3n-1+1

By (4), ¥, yn-1,, = Y,n-1 and ¥,n-1, . =Y, , n-1,

Therefore the 2/3-way point Z,,.n-! is the reflection

point of the 1/3-way point Z,n-1 about the Y = X,

- 10 —



By (4), X(sp=1_1y ;5 = X(sunm1ogy 2 -

Hence the X-components of the l/6-way point and the 5/6-
‘way point are equal. The intersection point between the
Y = X line and the line which joins the 1/3-way point

and the 2/3-way point is Z0 which is [(Xan—l + Yan—l)

I

/2 (Xsn_l + Yén_l)/Z], and the intersection point betwe:
the ¥ = h{(X) line and the line which joins the 1/6~way

point and the 5/6-way point is %, ., which is [X  n-y_

' L.

h(X Two different points of the orbit

. (3n-1"'1)/2)]'
of periocd 2-30 lie on the ¥ = h(X) line. Let us call ont

point which is left to the other point the initial point

By (4) X,,;n-1 = X, .3n-1 and X,n-1 = X, . n-1. Hence the
X-components of the 1/3-way point Z, ,n-1 and 2/3-way
point Z

4.3n-; are equal, and so are the X-components of

n—3 and 5/6-way point Zs.3P7?, Zuic

the 1/6-way point Zs
is [X, . 3n~-1, h(xé.an“lll and 2y o is [X3n~1;h(x3n-1)],
where Zuré is the intersection point between ¥=h(X) line
.and the line which joins the 1/3-way point‘and 2/3-way

point. Zl/2 is the point defined for the 3Q-cascade.
,C

Two different points of the orbit of period 6+31 lie on 1

Y = X line, where the basic orbit of period 6 is the

orbit bifurcated from the orbit of period 3. When the

- 11 -



1/2-way point of the orbit of period 2m lie on Y = X,

X = X
m—

0 and Y =Y £ =20,1,2,... (5)

&= m+e+1 m-2,

By (5}, XG_Sn_1=Y12;3n—1‘and X12'3n—1?Y5n3n‘ Therefore the
1/3-way point 72, ,n-1 is the reflection point of the 2/3-
way point le‘an—i about the Y¥=X line, and the 1/6—way

point Z;.,0!

is the reflection point of the 5/6-way
point Z,s.30”! about the Y = X line., Z,,c is [(Xe.3P~!

is [(Xj3.30"!

f Yﬁ.sn_i)/2,(Xﬁ.gn—1+Y5.3n*1)/2] and Z%,c
+ Y3.3071) /2, (Xs-30=1+ ¥,3.,5071) /2], where Z%,C is the
intersection point between the ¥ = X line and the line
which joins the l/6-way poin£ and 5/6-way point, and
Zo,c is the point defined for the.3n—ca9cade.

Before the residue R passes the l/4-resonance value
(R=l/2), a pair of. stable and unstable orbits of period
4 times the original period are born and at the 1/4~reson-
ance value the newly born orbit is absorbed. After the
residue R passes the 1/4-resonance value, the original
periodic orbit emits the newly born unstable orbit in
such a way tﬁat two points which lay on the symmetry line
lie off the symmetry line and two.points of four points
‘which enclose the 1/2-way point of the original periodié
orbit and lay off the symmetfy line lie on the symmetry

line.

- 12 —



Let us see the structure of the‘newly born orbit by
the resonance of order 4. There are two cases for the
k.4"-cascade. One case is that two different points of
the orbits of period k-4n lie on the Y = h(X). The other
case is that two different points of the orbits of period
k-4" lie on the Y = X. Fdr example, the 4n-cascéde is
the former~case‘and the'6-4n-cascade is the latter case,
where the basic. orbit of period 6 is the orbit bifurcated
from the orbit of period 3. For the 4nfcascade, let us
call the point which lies on the ¥ = h(X) line the initial
_point which four points of which two points lie on Y=h (X)
enclose.

The intial point Zorthe_l/4—way point Zun_l, the
1/2-way point Z?-_kn__1 and the 3/4-way point Za'hn-l of
the orbit of period 4™ enclose the initial point of the
orbit of period un‘iﬂ VThe 1/8-way point Zz_un_z, the
J/B-Way point Zs-un‘z' the 5/8=way point Z1o-un—2 and

the 7/8-way point Z of the orbit of period 47

14 e 172

.enclose the 1/2-way point of the orbit of period 4n-1,

By (4),X .. =X  p-)- Hence the X-components of 1/4-
y 171 acy

way point and 3/4—wayipoint are equal. By (4), X2 D=2

= X -2 and X =X - ' v
T 6. 4N2 10.40=2 " Hence the X-compo-

nents of 1/8-way point and 7/8-way point are equal and

- 13 -



so are the X-components of 3/8-way point and 5/8-way
point. The intersection point between Y=h(X) line and
the line which joins the l/4-way point and the 3/4-way

point is Z.  which is”{xun-l'htxkn—l)]' the intersectic

r

point between the Y=h(X) line and the line which joins

1/8-way point and 7/8-way point is 2 which is [X2 ,n-

2,

h(X2 qn*?}] and the intersection point between the Y=h(:
line and the line which joins the 3/8-way point and the

5/8-way point is 2, o which is [Xs-un‘thtxs-un‘z)]'

!

For the 6-4D-cascade, let us call the point lying on the
¥=X line which four points belonging to the orbit of
period 6-4"*1 of which two points lie on Y=X enclose the
initial point of an orbit of period 6-4". By (5),

X =Y ‘ and = .. . . Hence the 3/4-
6oyl 1.4071 xla.un*f Xssun-l‘ /

way point g is the reflection point of the 1/4~

18,4071
, about the ¥=X line. By (5), Xa

wa oint Z =
Y P 6oyl Rl
X =YX - X =Y oy ahd
21.40=17 Ty, 0l 3.4"17 Tg 4n=l Ty g, Nm1
X ..,n-1 =Y  n-1. Hence the 1/8-way point is the re-

flection point of the 7/8-way point about the ¥=X line
and the 3/8-way point is. the reflection point of the
5/8-way point about the ¥=X line. The intersection poin

between the line ¥=X and the line which joins 1/4-way

.._14-



point and 3/4-way point is 2 which is [(X6 ,n-1%

1,C
Ys.kn_])/zr (Xs.qn_1 + Ye.#n_r)/z], the intersection
point between the line Y=X and the line which joins 1/8-

+

way point and 7/8-way.point is 22 which [Xa n-1

r *h

Y o .n-1)/2, (X o+ Y 5.1)/2] and the intersection

point between the line ¥=X and the line which joins 3/8-

way point and 5/8-way point is 2, & which is [(X9 qn-1 t
- *

Yg-un"l)/z' (Xg-un_1+ Yg.un-l)/z]'

Let us define the following sequences for the 30~

cascade. Like the period-doubling cascade, §j = an-3nt

[

where a, is the nonintergrable parameter value at which

the orbit of period‘k-Sn is unstable.
X, (n) - Xyro(n)
ap(l) = X, (n+l) - X ,c(n+l)’ where X, (n) is the

X-component of the initial point of the orbit of period
k-3 and X, o{n) is the X-component of Z, . of the orbit
r ) o

of period k3" g,(1) = Y1y (0) - Y2/§n) , where
'Yl/a(n+1) - Yz/a(n+1)

‘Yl/s(n) is the Y—componént of 1/3-way point of the orbit

of period k-3 and Yz/gn) is the Y-component of 2/3-way

point of the orbit of period k-30.

an(2) = X1/z(n) B Xl/z,c(n)

X1/£n+l) - XI/Z'C(n+l)

- 15 ~



“where X%(n) is the X-component of the 1/2~way point of

the orbit of period k. 3" and X% o is the X-component of
r . A

Z, . Of the orbit of period k.3",
r
Y (n) - Y (n)
Bn(2) = /8 5/& , Where Y (n) is the
Y (n+l) - ¥ (n+l) r/6
1/6 5/6

Y-component of the 1l/6-~way point of the orbit of period
k-3% and Ys/é(n) is the Y-component of the 5/6-way
point of the orbit of period k-3B.

For the 3n~cas§ade, it is observed that when n is
an even number, both the initial point and the 1/2-way
point of ﬁewly born orbit move left from the initial
point and the 1/2-way point of thé original orbit and
move right by turns, and for an odd n (23), the initial
point of the newly born orbit moves left from the initial
point of the original orbit, as the 1/2-way point of the
newly born orbit moves right from the 1/2-way point of
the original orbit, and moves right as the 1/2—wéy point
of the newly born orbit moves left by turns, as the non-
intergrable parameter a is varied. For the 2.3"-and
the 6.3"-cascades, it is observed that for an even n, the
initial point and the l/2—wéy point of the newly born

orbit move in such a way that for an odd n, they move

- 16 -
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for the 3"-cascade, and for an odd n (n>1), they move

in such a way that for an even n, they move for the 30-
- cascade. Hence, unlike the period—doubling cascade,

the period-trebling ap-and Bp~sequences converges alter-
nately as n—«. In other words, each of the ap-and
Bp-sequences has two différent limit values, o, ,a,,B8 ,8,.
From Table 1 to Table 6 it is observed that ¢, is -17.9,
o, is 2.45, B, 1is 6.02 Bzis ;31.0. On the other hand,

like the period-doubling sequence, the dp-sequence con-

verges as n - « and the limit value §' is 20.18.

Let us define the following new seguences.

. a - a .
§_{e) = _2M=2 2m ' where n=2m
n a - a
2m 2m+2
. a -a
, = 2m=-1 2 mt1
§ (o) = m-i _ 2m , Where n=2m+!

2m+1 azm+3

_Xolem}) = = Xo,clemt2)

o_(r.e) = : ., where n=im
n Xg (2m+2) ~ Xo,c(2mt2)
- - Xplem+i) - Xg,c(zmt1)
o, (1,0): = , where n=2m+1
Xg (gm+3) - Xp,cl2mts)
Y, (em) - Ya/3(2m)
Bn(1,e) = 1/3 " ., where n=:m

Yi/3{amb2) = Yy /3(2mt2)

- 17 ~



Y (2m+l)-Y (2m+1)
2/3

Bn(1l,0) = _1/3 , where n = 2m+l
Y (2m+3)-Y (2m+3) -
1/3 2 /3
X (2m) - X © (2m)
‘ = 2 1/2 ,C
oan(2,e) = Xl/(2m+2) = g ;, Wwhere n=2m
1/2 1 /2 rc (2m+2)
X (2m+l) - X {(2m+1) _
ap(z,0) = 1/2 1/2rcC , where n=2m+l
X1/§2m+3) - Xl/z,c(2m+3)'
Y1 éZm) - Y5 ézm)
Bn(2,e) = __ 1/ ¥/ , where n=2m
Yl/é2m+2) - Ys/é2m+2)
Y (2mtl) - ¥ (2m+l) |
Bn(2,0) = 1/¢ 5/ 6 , where n=2m+l
?1/é2m+3) - Ys/é2m+3)

From Table 7 to Table 15 it is observed'that'an(l,e)w,
an(l,o0), dn(z,e) - and an(2,o) ~ Ssecuences converge to
~ the same limit-value oa(=a,-a,) which is -44.0,
" Bn(l,e)-, Bn(l,0)- Bp(2,e) - and Bn(2,0)- sequences‘also
converge  to the same limit-value B(=8,: B,) which is <187
and 6y (e) - and Gn(oj—sequences also converge to the same
limit-value 8 which is 4Q8 irrespectivé of k. |

Let us define the following-seQUences for the 49~

‘cascade.

- 18 -



an..,;~a . _ _—
“n~1" 9N where ap is the nonintergrable

an=an+,

Sn

13

parameter value at which the orbit of period k-+4D is

Xg(n) - X, (0

unstable. ap(l) = , where X,(n) is

Xo(n+l) - Xl'c(n+l)

the X-component of the initial point of the orbit of |

period k=+-40' and X, c(n) is the X-component of Z, c of

’ r

X , (n) - X, c(n)
the orbit of period k+4n, apn(2) = }/? | ’
‘ X (ntl) - X {n+l)
1/2 }'C
where X3 (n) is the X-component of the 1/2-way point of
X, é(n)- - X, (m
the orbit of period k-4, ap(3) = d '
X, c(n+1) - X, C(n+l)
- !

where X, c is the X-component of Z, c of the orbit of
!

!

period k+4% and X, . is the X-component of Z, .of the
r r
Y (n) -Y (n)
orbit of period k-4R, Bp(1) = _ /% 3/ .
Y (n+l) - Y (n+1)
1/ 3/

- where Yl/k(n) is the Y-component of the 1/4-way point

of the orbit of period k-4" and Ya/h(n) is the Y-compo-

- nent of the 3/4-way point of the orbit of period k-4R1.
) - Y?/ﬂ (n)

Y (n _
Bn(2) = _1/% , where Y . (n) is the-
Y (n+l) - Y (n+l) - 1/8
1/3 7/3 '
Y-component of the 1/8-way point of the orbit of period

k4D and Y y {(n) is the Y—component of the 7/8-way
7/8

- 19 ~



point of the orbit of period k-4,

Y (n) - Y (n)
Bn(3) = 3/ 5/ , where YS/B(n) is the

Ys/a(n+l) - Ys/a(n+l)

Y~component of the 3/8-way point of the orbit of the

period k 4% and Ys,a(n) is the Y-component of the 5/8-

’l .
way point of the orbit of period k-+4D

For the 4N-cascade, it is observed that like the
period—doubling bifurcation,'the initial point of the
newly born orbit moves away from the initial point of
the original orbit which moves toward thé 1/2-way point
of the newly born orbit. It is also observed that
before the resonance the initial point and the 1/2-way
point of the newly born unstalbe orbit move toward the
intial point 6f the original orbit and are emitted off
the symmetry line by the initial point of the original
orbit after the resonance, while two points of four
points which enclose the 1/2-way point of the original
orbit and 1ay'off the symmetfy liné lie on the symmetry
line and one point of the above two points moves away.
from the l/2-way point of the original orbit which moves
toward the other point. |

From Table 16 to Table 21 it is observed that 8§~

sequences converge to the limit-value § which is 24.5,
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an{l)~, an(2)- and op(3)-sequences Eonverge to the-
limit-value o which is =5.61 and Bn(1)-, Bp(2)- and
Bn (3)— seguences cohverge to the limitivaiue B which
is 14,3 irrespective of k.

Let us calculate § for the 4N-cascade by the re-
normalization schemAdeveloped by B. Derrida and Y.

17
Pomeau (the Equality of slope) . The Jacobian matrix

n
Mp of TR about an orbit of period n is [ Mj, where
"h _ i=1
- (2h'(%;})-1 . i i
T M; = (l i 0) and (Xl,Yi) is the ith element of

i=1
the orbit of period n. The eigenvalues of My is given

by the equation Aﬁ - TrMn-A,+1=0, where Ap is the eigen-
value of Mp. For the 4n-cas¢ade, the idea of rénormali—
zation is that the linearization of TR around a point of
the orbit of period n is identical to the linearization
of ' around a point of the orbit of period 4n. For

the orbit of period 1, TrM, = 2-2 yl+a.

For the orbit of period 4 which is born by the l/4—res-»
onance of the orbit of period 1, TrM, = —16a2-32a3/2+2.
For n=1, TrM, (a) = TrM, {a'), whefe a and a' are the
nonintergrable parameter value at which the Qrbit of
period 1 and the orbit of beriod 4 have the same res-
idue R. Hence, {Jita - 1 ~8a'%16a' /% -1

The recursion relation (8) provides an approximate

value for a, which is the accumulation point of an=-
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sequence and of §. ae is the fixed point of the recur-

sion relation (8), whereas § is gi#én by

5 = da/da‘|a, BT

The fixed point a, is 0.1467 and the numerical value

is 0.1427, .
Therefore the reiative error is 2.8x107°.

§ = da/da"|, ) is 24.7 and the numerical value is 24.5.

Hence the relative error is 8.2X10-3.
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Iv. CONCLUSION AND DISCUSSION

From our numerical work, it can be guessed that
there exists a universal'map under the operafion Qf
ninetupling and rescaling,‘not under the operation of
trebling and rescaling for the k+3%-cascades, and there
‘exists a universal map under the operation of guadrupl-
ing and rescaling for the k+<4D-cascades. It seems that
the universal rescaling constant ¢, o and B are 468,
~44.0 and -187 for the k-30-cascades and 24.5, -5.61
and 14.3 for the k-4%-cascade. By the k+r" cascade,
infinite ordinary hyperbolic orbits which are the
sources of chaos are born and infinite elliptic orbits
which can be the basic orbit of the resonance indluding
the period-doubling bifurcation are born. Hence the
discovery of the universal scaling behavior of the
period-trebling and the period—guadrgpling cascades
is of great impoftance to an understanding of the noninter
grablé dynamics for which N independent analytic con-
ustants of motion do not exist in the dynamic system of
N degrees of freedom. From recent numerical works which
contain the period—doqbling bifurcation studies and our.
.present work how iﬁé;riant circles with rational winding
numbers are destroyed can be understood more deeply than

“before.
—- 23 -
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Table 1

n an ‘5 .n
1 1.250000000 20.24608463
2 1.184948799 20.32153602

3 1.181735773 20.18805088

4 1.181577664 20.18782112

5 1.181569832 20.18480928

6 1.181569444 20.18483394

7 1.181569425

8 1.181569424

Table 2

n on(1) on(2) Bn(1) Bn (2)
2 -17.94807670 2.382765362 6.043232932 -31.65254818
3 2.464334401 -17.96708285 - -31.14074300 6.020621327
4 -17.92182852 2.452486664 6.023375256 -31.04739229
5 2.453921972 -17.92745931 ~-31.03414165 6.016983385
6 -17.89177108 2.453393967 - 6.017035267 -31.03296551
7 2.458191868 -17.92621298 ~-31.02931961 6.017112896

cascade.

Table 1 and Table 2 contain the sequences for the 3"-



Table 3

o U e w N RS

an 6'n
1 3.743333913 20.32963004
2 3.732224438 20.28132436
3 3.731677971 20.19099181
4 3.731651026 20.18703699
5 3.731649692 20.18486982
6 3.731649626
7 3.731649622
Table 4
an (1) an(2) Bn (1) Bn (2)
-20.41954178 2.633687289 5.308845695 ~34,13025554
2.424220383 -17.88404758 -31.72010133 6.159911725
-17.94229048 2.461078837 6.034140995 -31.10581391

2.453147278 ~17.92777078

-17.91976143

2.452723605 -17.92626105

2.453561405

-31.04382625
6.016883488
~31.03297569

6.018915472
=31.03476423
6.017123273

cascade.

Table 3 and Table 4 conﬁain the sequences

for the 2-37-



Table 5

n an‘ Gn

1 1.273324540 20.23425621
2 1.272975387 20.28140921
3 1.272958132 20.18914267
4 1.272957281 20.18704105
5 1.272957239

6. 1.272957237

Table 6
n an (1) an (2) Bn (1) Bn(2)

1 -20.87389724 2.535049260 5.057408454 -33.56936925
2 2.413444286 -17.87626509 -31.71609119 6.147558217
3 ~17.93627187 2.461736108 6.035321745 -31.10168975
4 2.451945540 -17.96267506 -31.04228074 6.019324314
5 -31,05464845

-18.23324905 2.434675829 6.017748585

cascade.

Table 5 and Table 6 contain the sequences

for the 6*3n—



Table 7

Gn(E) dn(O)
410.1247977 411.3758777
407.4844741 407.5496709
Table 8
an(l,8) an(l,0) an(2,€) an(2,0)

-44.23006285 -44.16537855 -42.81134268 -44.06403109
-43.97876879 -43.90501019 -43.96685488 -43,98312051
-43.98140618 -43.98006276

Table 9

Bn(lre) Bn(lro) Bn(_zre) Bn(Z,O)

-188.1907636 -187.5723808 -190.5680066 f186.9245922
~186.9302809 -186,7335248 -186.8116436 -186.7248379
-186.7045104 - -186,7288570

Table 7, Table 8 and Table 9 contain the sequences for
the 3P-cascade.



TABLE 10

Sn(e) 8n (0)
409.4101992 412.1791339
407.59040648
TABLE 11
an(l,e) an(l,o0) anf(2,e) on2,o0)
~43.49606631 -49.50146940 -44.01405103 —47.10098879
-43.95981398 -44.,01508105 -43.98688647 -44.12165727
-43,95222186 -43,98318223
TABLE 12
Bn(lre) Bn(l,O) Bn(zfe) Bn(Z,O) ‘
-191.4035638 ~168,3971234 —191.6090678 -210.2393613-
~186,.7870856 -187.3228246 ~-186.7956226 ~187.2232646
-186.7217990 -186.7400022

~Table 10, Table 11 and Table 12 contain the sequendes
for the 2.3"-cascade.



TABLE 13

5n(8) Sn (o)
409.3743406 410.3360495
TABLE 14
an(1,e) an(1,0) an(2,8) an (2,0)
-43.28819285 -50.37798803 -44.00664727 -48.01474101
-44.70693370 ~-43.97876181  -43.73329080 -44.21936580
TABLE 15
Bn(lre) B.n(lro) Bn(zre) Bn(zyo) .
-191.4168148 -160.4012277 -191.1994484 -206.3696518
-181.8046410 -187.3501520 -187.2111573

~186.9280005

‘Table 13, Table 14 and Table 15 contain the sequences

for the 6° 3

—cascade.



Table 16

14.20979209

n apn Sn
1 0.2174036214 23.43463686
2 0.1459017237 25.02169181
3 0.1428506034 24.45464723
4 0.1427286644 24,47809120
5 0.1427236780
6 0.1427234743
Table 17
2 -5.487677767 _~5.667174864 ~4,580167687
3 -5.612448528 -5.566557511 -5.991054023
o4 -5.6116719358 ~5.€630419126 -5.4%6737200
5 -5.617899899 ~5.611580858 -5.641655675
Takle 18
n By (1) Bn(2) gn (3)
2 14.60256681 16.93454050 16.08334069
3 14.32370750 13.490972%6 13.61123264
4 14.297811%1 14.58909657 14,58738808
5 14.27544874 14.21267481

Table 16, Table 17 and Table 18 contain the sequences
for the 4"-cascade.



Table 19

n an - 6p
1 1.266917429 24.00347034
2 1.266423335 24.96703899
3 - 1.266402819 24.48424826
4 1.266401997
5 1,266401963
Table 20
n an (1) on(2) an (3)
1 -5.982580185 -5.385514669 -6.986122518
2 -5.589441110 -5.790629455 © =4,624669760
3 -5.614297500 -5.585121294 -5.928418441
4  ~5.612802380 -5.627649640 ~5.525441173
Table 21
n Bn(1) Bn(2)  Bn(3)
1. 14.14456488 12.03661396 14.17862736
2 14.89470455 17.74990498 17.35061375
3 14.36496253 13.66642442 13.75472335
4 14.30044373 14.52217575

14.52593606

‘Table 19, Table 20 and Table 21 contion the secuences
. for the 6,4N-cascade '






